The Cancún Butterfly

Critics, ourselves included, like to sneer at changing light-bulbs, but when light-bulb-changing reaches millions of homes and businesses, that strategy takes giant coal plants off line. What became clear in our years of research into The Biochar Solution, it is that each one of us has a much larger effect on global climate than most of us imagine.
One day in the winter of 1961, exactly 50 years ago, Edward Lorenz was working on an ancient 8-bit computer at MIT trying to understand weather patterns. When he arrived at work that morning, he decided to take a shortcut on his simulation and rather than start from the beginning of the run, he typed in the numbers from a previous point. He walked down the hall for his morning coffee and left the dot matrix printer to re-plot the graph. As he sipped his coffee, a new branch of mathematics, chaos theory, was born.
When Lorenz walked back to his office and looked at the printout, what he saw was something odd. Instead of the same weather pattern as before, the computer had created something new. The repeat pattern started at the same point and followed the previous pattern closely for a short time, but then began to diverge. It continued to diverge until all resemblance to the original sequence disappeared. Lorenz could have assumed something was wrong with his computer, or his program, but he guessed, correctly, that he had stumbled upon something more profound.

Lorenz’s diverging pattern was caused by the significant difference between the six-decimal numbers used by his computer (ie.:.506127) and the rounded-off three-decimal numbers appearing on the printout from which he had re-keyed (ie.:.506). When he typed in the shorter number, he could assume that one part in ten thousand, or a million, would be inconsequential. After all, in numbers referring to windspeed, one part in ten thousand represents only an imperceptible puff of wind, not an entire weather system. But as the difference propagated itself in equation after equation, the entire weather of the earth changed. Lorenz named the phenomenon the “butterfly effect” — because it now seemed that a butterfly stirring the springtime air in Peking could transform the course of summer storms in New York.
Lorenz reasoned that sensitivity to initial conditions was no accident, but is necessary to all natural systems. The influence of small perturbations is what endows larger patterns with such rich variety. It is what gives weather its unpredictability.

We sometimes wonder why the fungi and bacteria we evolved from wanted us to be here. We can assume that when they made a decision to branch off into plant forms, they needed the stable photosynthetic process to further their exchanges and increase their scope and diversity -- anaerobic vs aerobic, for instance. Likewise, animals gave them a greater range, by pollinating and transporting easily over greater distances, and by complex guts and manures that refined their cuisine with inordinate elegance. So why humans? As we ponder this, what we've come to appreciate is that we provide disturbance. Disturbance in ecosystems increases biodiversity. That is our gift to our bacterial forebears, who still course through our bloodstreams and organs and make up some tiny fraction of our weight. We give them disturbance.
Perhaps they did not anticipate just how much disturbance we two-leggeds are capable of. Or maybe they did.
We took 500 million years of sunlight stored in carbon form and moved it from the Earth to the Air. The Air said, whoa, wait, too much for me, and passed it to Water. Every time a plow cut a field in Sumer, or a Ming dynasty farmer stuck a stick in the ground and diverted water for irrigation, carbon went from dirt to sky to ocean. Agriculture is 40% of greenhouse emissions, but that reckoning is flawed, because it mostly just accounts for the tractors, rice paddies and cow flatulence, not the off-gassing of bared soils. Land disturbance; that is what the two-leggeds do best.

Besides hinting at a human-Gaian umbilical far more reciprocating than imagined, what this shows is that the potential exists to return us to pre-Anthrocene concentrations of atmospheric C by reforestation and terrestrial carbon loading, assuming we are not thwarted by Jevon's Paradox and political inertia but also bring down emissions that currently exceed biospheric sequestration by 3.2 GtC/y (although to save the coral reefs, we need to also decarbonize the oceans and that means much more than 3.2 GtC/yr).

Recently DemocracyNow! profiled a boy from South Africa who started planting trees at age 9 and organized his classmates to plant a million trees. In our book that is the strategy we talked about: youth tree-planting competitions.
But the catch is that long before we get to 40 GtC/y, we run out of available land. And this, also, is where the versatility of biochar comes into play. We have a chapter about how we can re-green the deserts, much in the way Geoff Lawton is working in Jordan and the Middle East. The Sahara Forest. The Gobi Forest. The Sonoran Forest.

How finely tuned is the human relationship to the climate? What hand might social convention among Paleolithic societies have had in creating Holocene stability? These are large questions we are only just beginning to know enough to ask. Perhaps we will be around long enough to answer them.
Next: Cool food, cool fuel, cool climate.
Comments
Duane's website,
http://www.computare...m%20Oil0001.pdf)
It's support of Johannes Lehmann's previous work of a potential 10 GtC, and the added perspective of palioclimatic effects of soil carbon loss, the Ruddimann Hypothesis, brought together many loose threads for me.
Particularly the idea that Agriculture allowed our cultural accent and Agriculture will now prevent our descent.
Dr. Dull's recent work brings even more support, related even closer to practices of Terra Preta soils in the Amazon. The BC, charcoal & pollen evidence is hard to ignore
I'm glad this work by Dr. Dull is getting attention. Together with Dr. William Woods and citing Bill Ruddiman's work, the pieces of anthropogenic climate change fall into place.
This work also dispels any notion that the Kayopo TP culture were "Carbon Noble Savages". Terra Preta Nova at Large & small scales will not make us carbon noble either,We will need every wedge known.
Dr.Dull gives us hard numbers for what Charles Mann has tried to get across to us in "1491", that we don't give mankind near enough credit for creating our biosphere. Just as Michael Pollan's "Botany of Desire" showed us how plants have manipulated us to spread them around the globe, the message of man's mutuality with nature is more than seeping into the data everywhere.
Also of Soil interest;
Farm management choice can benefit fungi key to healthy ecosystems
http://www.eurekalert.org/pub_releases/2010-09/cfe-fmc091010.php
Cheers,
Erich
thought you might like my machinima film the butterfly's tale~
http://www.youtube.com/watch?v=y1fO8SxQs-E
Bright Blessings
elf ~