Sunday, March 25, 2018

NTHE is a Four Letter Word

"Collective neurosis can be attributed to a concatenation of causes — diet, electrosmog, epigenetic triggering by microplastics in our toothpaste — take your choice."

Drawn by TedE, wikimedia commons
We are not talking about climate deniers now, who have their own brand of insanity, but we keep hearing the same mantra chanted by otherwise respectable scientists and policymakers that, “climate change may be catastrophic but it won’t be the end of us.”

We hear that so often we almost never challenge it, not wishing to divert an otherwise productive conversation into what we know to be a blind alley. Nonetheless, we think the statement is at best deluded and at worst just a milder form of denialism. It is not science. It is faith. It is also human neurophysiology.
Brain imaging research has shown that a major neural region associated with cognitive flexibility is the prefrontal cortex — specifically two areas known as the dorsolateral prefrontal cortex (dlPFC) and the ventromedial prefrontal cortex (vmPFC). Additionally, the vmPFC was of interest to the researchers because past studies have revealed its connection to fundamentalist-type beliefs. For example, one study showed individuals with vmPFC lesions rated radical political statements as more moderate than people with normal brains, while another showed a direct connection between vmPFC damage and religious fundamentalism. For these reasons, in the present study, researchers looked at patients with lesions in both the vmPFC and the dlPFC, and searched for correlations between damage in these areas and responses to religious fundamentalism questionnaires.
Bobby Azarian, Raw Story, March 14, 2018

In the quote above, Azarian is referring to a study published a year ago in Neuropsychologia that connected cognitive flexibility with the ventromedial prefrontal cortex and proved that damage to that part of the brain hinders adaptive or flexible behavior, locking out world views that run contrary to some preconception. The study correlated brain-damaged veterans with religious fundamentalism.

The preconception most often grasped by NTHE deniers is the notion that “humans survived far worse cataclysms to arrive at their present condition” —  the Toba event 70,000 years ago, for instance, when the human population was reduced to perhaps 10,000–30,000 individuals — “and we invariably rebound.” 

The example most often cited is the 2005 Rutgers mDNA study showing all pre-1492 native populations of the Americas  —  well over 1 billion by some estimates  —  having descended from 70 or fewer individuals who crossed the land bridge between Asia and North America.

This is a variant of the techno-cornucopianism of Bill Gates or Elon Musk, but in their cases — building new desert cities in Arizona or seed colonies on Mars — that being externalized, absent a cold fusion Spindletop, is biophysical economics.

We have previously reviewed the hypothesis of Danny Brower and Ajit Varki that an evolutionary leap allowed homo to access higher consciousness by hard-wiring a neural pathway for denying reality.

Arguably that same pathway induces otherwise rational-seeming people to allow for the possibility of catastrophic climate change (already well underway) while denying the possibility of it leading to near-term human extinction (NTHE).

In our view, this colors the debate over what we should be doing by reducing the urgency.

Ironically there may have been human genotypes that suppressed their denial gene better than ours does. One of the effects of genetic bottlenecks is that selected genes (such as those offering a more balanced use of denial) fail to be passed along to succeeding populations. 

Our personal view is that while we think NTHE can yet be avoided, the time for action grows short and as we as we walk out onto the razon’s edge and grow more desperate we will likely make many foolish mistakes, any one of which could trigger NTHE. Appointing John Bolton the National Security Advisor, for instance. In 2016 USAnians fed up with the tweedledee-tweedledum two-party system opted to just hurl a hand grenade into the White House and stand back. If one grenade was not enough, we still have President Bannon to look forward to in 2020 or 2024 if Cambridge Analytica can keep up with the AI revolution with respect to Big Data.

Collective neurosis can be attributed to a concatenation of causes — diet, electrosmog, epigenetic triggering by microplastics in our toothpaste — take your choice. Visionary forebears who saw these bottlenecks coming — Garrett Hardin, R. Buckminster Fuller, M. King Hubbert — all argued that the best antidote was better public education. But at least in the US, public education was hijacked in the ‘90s by the vmPFC-lesioned hoards of Zombie Fundamentalists before being handed over to Betsy DeVoss for the final coup d’gras. Whatever long wave or ergot diet issued humanity into the Dark Ages seems to be replaying now, and it could hardly arrive at a worse time from the standpoint of the organized climate solutioneering required to avert Anthropogenic NTHE. 

We need to be in top form to survive this next bottleneck. We’d do better without the denial. Too bad climate scientists can’t afford to hire Cambridge Analytica themselves.

Sunday, March 18, 2018

Symbiotic Recycling

"Solutions that endure usually begin at the bottom. They build regenerative, circular economies based upon local assets — human and natural. "

The road to energy efficiency is in theory a sustainability sweepstakes… Who needs Russian gas, if we could get all the heat we need from our own surplus? Who needs Middle Eastern oil, when we can integrate limitless renewable sources in our smart grids?

— Jens Martin Skibsted, World Economic Forum 2018 Annual Meeting

The conversation about “development” today is generally phrased in words like growth, jobs, stock market highs and lows, gross domestic product, or trends in consumerism. Some of the more far sighted use metrics like inclusion, intergenerational equity, longevity, marriage stability and happiness. Yet, just as all politics is local, all economics are personal. It comes down to how well any community — be it a rural cluster of farms or an urban neighborhood — fends for itself in the volatile world of the 21st century.

Solutions that endure usually begin at the bottom. They build regenerative, circular economies based upon local assets — human and natural. They care for all, protect the planet, and reach out to help their less fortunate neighbors. They are organic, resilient, and anti-fragile.

A few years ago in Wada, India, Shri Gauranga Das established Govardhan Ecovillage and its philosophy of “Symbiotic Recycling” — a merger of science and Vedic teachings that integrates organic farming, biogas and green buildings into a circular local economy.

Today half of the world’s population lives in urban areas. By 2050 the proportion in India is expected to be 80 percent. Three quarters of India’s 83.3 million rural villagers earn less than five thousand rupees ($78) per month. Half do not own land. Those that own are often indebted to banks for equipment, fertilizer and pesticides, charged interest rates they cannot pay. Suicide rates in the countryside are double those in urban areas.

Govardhan’s symbiotic model stops all that. Organic fertilizers, compost and mulch are produced locally at practically no cost. Biogas replaces wood or gas for cooking. Construction wastes like broken cement poles make raised bed gardens, cob houses and infill for infrastructure. Green buildings of compressed stabilized mud bricks are cool in hot weather and warm in cool weather. Broken bricks become waterproofing on roofs.

Rainwater management irrigates in dry months and recharges aquifers from monsoons. Greywater and blackwater flow to bioreactors that use plants, earthworms and aerobic microbes to remove suspended solids, pathogens and odor, returning energy and fertilizer.

India has long been one of the leaders in biochar, thanks in no small part to the work of Dr. N. Sai Bhaskar Reddy Nakka at the Appropriate Rural Technology Institute in Phaltan, a short distance south of Govardhan. For more than 20 years, Reddy has been taking biochar compost blends to farmers, making biochar bricks for green buildings, using biochar powders for waterless cleaning, and designing efficient home stoves. Worldwide, the three-stone open home fire is currently responsible for more childhood deaths than malaria — 8 million last year. Reddy has personally trialed more than 50 designs of low cost gasifiers for homes and businesses.

Now Govardhan Ecovillage is passing its symbiotic practices to 16 nearby tribal villages. Four hundred families have come together to plant more than 100,000 food, forest and medicinal trees that will absorb 2000 tons of carbon-dioxide as they grow. Das calculates that if even 1 percent of India’s villages follow the model of Govardhan, 4.7 million tons of CO2 will be drawn down annually.

Gauranga Prabhu graduated from the Indian Institute of Technology Bombay in 1993. It is difficult to convey the significance of such an accomplishment outside India, but IIT is like the MIT or CalTech of India, only far smaller and more selective. Only 1000 graduates take degrees each year. The odds against even getting in are very long. In a December TED talk at Thapar University, Gauranga described how the academic pressure could drive students to suicide.

While at IIT, Gauranga studied Vedic scripture with H.H.Radhanath Swami Maharaja, and grew an interest in Krishna Consciousness. After school he began conducting Bhagvad Gita seminars in all prominent engineering colleges, medical colleges and management institutes. His design for Govardhan brought together all of these different elements into his symbiotic recycling. Gauranga Das describes the concept in a TED talk last June:

Unlike the anthropocentricism that pervades the principal Western religions (deriving from oppressed Middle Eastern desert cultures three thousand years ago), the Vedas, which are a thousand years older, present an ecocentric view of creation that places humans on a level footing with animals, birds, insects, trees, rivers, mountains, clouds and all the other parts of nature.

The anthropocentric worldview has failed us rather dramatically. The cultural pioneers at Govardhan Ecovillage are exploring what the alternative looks like in the real world.

Originally published at
Thanks for reading! If you liked this story, please consider sharing it around. Our open banjo case for your spare change is at Patreon or Paypal. This post is from Carbon Cascades: Redesigning Human Ecologies to Reverse Climate Change from Chelsea Green Publishers later this year (the book is free to our sponsors).

Sunday, March 11, 2018

Punctuated Equilibrium

" If the old answers are wrong, or become wrong over time, new answers are required. Civilizations that stay nimble enough to adopt the new answers begin a new chapter of life. "

We tend to conceive of evolution as a process that occurs over millions of years, but lately discoveries in genetics have changed that perception. We evolve in fits and starts — very slowly for long periods, then in sudden spurts of rapid change. Often the trigger is a particular event or convergence of upheavals that shake up the order of things. Within a very short time after each catastrophe, new life-forms emerge, ecotones form, and long-established orders realign. Evolutionary biologist Stephen J. Gould called this process “punctuated equilibrium.”

Cultural evolution proceeds in much the same fashion, as we can learn from the work of historians, sociologists and anthropologists such as Joseph A. Tainter, William R. Catton, Jared Diamond, and Dmitry Orlov.

Civilizations are living entities with regular cycles of birth, growth and death. They may evolve and grow for as little as a century or two (as for the Inca) or thousands years (as in India and China). When a civilization begins, it is a child — it tries new things and adopts behaviors it likes. As it matures its social norms become more rigid, embedded and brittle. It loses abilities to respond to change or adapt in new ways. Each generation is taught to accept “the way things are” without questioning. This phase ends in corruption, decay and decline.

Many of us can sense the next punctuation coming. It has already begun. Globally, the starting point for the next phase may have come three centuries ago. At that moment humans had only just discovered how to harness coal to make steam but had yet to employ the far greater energy density of oil and gas, never mind nuclear fission. The mere addition of coal to the human energy portfolio was enough to augur the end of the global civilization we know today.

Coal from the Fushun mine in northeastern China was used to smelt copper as early as 1000 BCE but it was the advent of James Watt’s steam engine in the 18th century that gave fossil energy traction, literally. In perfect parallel, expansion of the human population tracked expansion of the supply of available energy, railroads and factories. In 1965, Thomas McKeown put forward the then controversial but now widely accepted hypothesis that human population growth since the late eighteenth century was due to improved economic conditions and better nutrition.

Svante Arrhenius, running the mathematical equations for climate change, and Thomas Malthus, doing the same for population, accurately predicted the outcome once humanity was swept up in the enchantment of seemingly unlimited energy growth.

As we progressed in our ability to harness energy, we moved from a nearly stable world population, fluctuating little over the course of thousands of years, to a steady growth rate of 30 percent every 20 years. As our mechanical technology exploded, we went from adding one billion more people to the planet every 120 years in 1927, and the fraction of a part per million of carbon dioxide that required, to adding one billion people and 25 to 30 parts per million of CO2 every 12 years.

A reckoning awaits. When, exactly, that may occur is difficult to predict. It could occur suddenly, as the fictitious debt instruments engineered to cover the real life-support deficit can no longer be serviced. It could occur slowly, as we continue squeezing out the last tons of brown coal, barrels of tarry shale oil, and cubic meters of unconventional gas, using ever-advancing technologies to find, refine and burn them as quickly as possible, while ignoring the horrific climate consequences we are locking in.

Catton called our modern humans Homo colossus — those among our kind living in industrial countries and consuming massive amounts of fossil fuels to motivate and control machines that do orders of magnitude more work than humans or animals could do otherwise. Homo colossus is gradually replacing Homo sapiens as development spreads like a cancer across the Earth.

While Homo sapiens, with a stable population under one billion, might have had a reasonable chance of being around for another two or three million years, Homo colossus hasn’t a prayer.

In 2004, the Astronomer Royal in Britain, Sir Martin Rees, assigned humanity about a 50/50 chance of surviving through the 21st century. He was being generous. Earth has already passed tipping points in seven of ten essential life support systems for humans — biodiversity, climate change, nitrogen cycle, phosphorus cycle, ocean acidity, land fertility, and freshwater availability — and the other three — ozone, atmospheric aerosols and chemical/radioactive pollution — have yet to be fully quantified but may have already been exceeded as well.

In evolutionary biology a population bottleneck is where radical changes to the environment causes a species to lose of all but the most hardy of its population; hardy, that is, in terms of the selection pressures arising from the change. If there are no sufficiently hardy individuals left, or the ones that manage to survive cannot reproduce sufficiently to repopulate, the species goes extinct. We are quickly approaching that reckoning for Homo colossus but we have yet to understand what is happening, never mind change course.

Fossil fuels artificially boosted the carrying capacity of Earth for human occupancy. There is zero likelihood that deriving energy from capturing current and benign solar influx (as we did for thousands of years) could replace our belovedly potent but toxic concentrates of ancient sunlight gathered and stored over millions of years. It simply can’t. A steep population decline is coming. Whether extinction will be avoided is still an open question.

Evolutionary biologist Bruce H. Lipton says there are three questions that form the base paradigm of civilizations. If the old answers are wrong, or become wrong over time, new answers are required. Civilizations that stay nimble enough to adopt the new answers begin a new chapter of life. Those that don’t disappear. The three questions are:

How did we get here?
Why are we here?
How can we make the best of it?

The first question is a very unusual story no matter how you approach it. You could say we are here because billions of years ago astronomical collisions occurred as objects moving out from the Big Bang ricocheted like billiard balls and in an extraordinary chance occurrence one of those collisions produced an elliptical orbit in the third planet from a star, an orbiting moon just the right distance from that planet to pull tides, a spin that secured climate gradients between the poles and equator, and an eccentric tilt of the axis that permitted annual seasons — and the ebb and flow of photosynthesis. In these extraordinarily auspicious circumstances of birth we were also given the rarest gift — the presence of surface water, arriving during the collision like a water bag breaking at the start of labor.

The collision that struck off Earth’s moon enveloped the young Earth in a hot metallic vapor — 230°C (446°F). Over a few thousand years that vapor condensed, perspiring water and leaving behind a sweltering carbon dioxide atmosphere. Liquid oceans formed despite the temperature because of the pressure of the heavy atmosphere. Gradually, subduction by plate tectonics and absorption by ocean water removed most CO2 from the atmosphere, cooling the world and yielding a benign atmosphere of oxygen, hydrogen and nitrogen — and the perfect conditions for life to arise.

Or, alternatively, this may just be a dream that Vishnu is having.

If a civilization answers the third question in a way that ignores the energy and resource flows and storages of the planet — “get more stuff,” “watch out for number one, or “this world doesn’t matter, it is the next we want to get into” — they are destined to fail. If a civilization says to the third question, “maintain harmony,” “don’t anger the gods,” or “live lightly and plant for the future,” they may succeed.

Right now the majority of people in the world cling to self-destructive ways. They are set in old patterns and don’t realize how fragile and brittle those are. A growing minority see better ways and are putting together the building blocks for the next phase.

We have that choice before us now, individually and collectively. Civilizations undergo transformations. We can leave behind the old one that is poorly adapted and design and build a more advantaged new society. This book is part of that visioning process. The dying civilization was founded upon carbon. The new one will be too, just in different forms.

As the planet teeters on a climate precipice and the global economy is running full-speed towards a fossil carbon-induced bubble, many people see no viable solutions to these looming interconnected disasters. 

Those few among us who have glimpsed the possibility for a new carbon economy grounded in vast legions of energized and empowered youths spreading out across the landscape regenerating soils, forests, oceans, whale populations, migratory waterfowl and a garden planet may seem crazy.

But these are not moonshots, or science fiction. They are economically viable and applicable reconceptions for many different industries. Some solutions are already being field tested while others have yet to leave the laboratory.

It is an exciting time to be carbon beings on a carbon world, learning how to grow and prosper with the natural cycles of carbon.

Thanks for reading! If you liked this story, please consider sharing it around. Our open banjo case for your spare change is at Patreon or Paypal. This post is from Carbon Cascades: Redesigning Human Ecologies to Reverse Climate Change from Chelsea Green Publishers later this year (the book is free to our sponsors).

Tainter, J., (1988) The Collapse of Complex Societies (New Studies in Archaeology), Cambridge: Cambridge University Press.
Catton, W., Overshoot: The Ecological Basis of Revolutionary Change, University of Illinois Press (1980); Bottleneck: Humanity’s Impending Impasse, Xlibris US (2015).
Diamond, J., (2011) Collapse: How Societies Choose to Fail or Succeed, Penguin Books, Revised Edition.
Orlov, D., The Five Stages of Collapse: Survivors’ Toolkit, New Society Publishers (2013); Reinventing Collapse: The Soviet Experience and American Prospects, New Society Publishers, Revised edition (2011).
Rees, M., (2004) Our Final Hour: A Scientist’s Warning: How Terror, Error, and Environmental Disaster Threaten Humankind’s Future In This Century — On Earth and Beyond, Basic Books.
Lipton, B., (2016) The Biology of Belief: Unleashing the Power of Consciousness, Matter & Miracles, 10th Anniversary Edition, Hay House, Inc.

Sunday, March 4, 2018

Carbon Cool

"These stories have three things in common. They reverse climate change by gaining new respect for the element carbon upon which all life depends. They are powered by human ingenuity, working as part of, not against, nature. They are driven and emboldened by the astonishing, illimitable, force of youth."

 Sustainability is an overused and misused word in most languages. In the physical world absolutely nothing is sustainable. Nothing. We need to accept that. What sustains us is change, and our ability to adapt and innovate.

Sustainability is a bit like treading water. What is it you are trying to sustain? The endless economic growth industrial paradigm? Creature comforts that require long supply chains and toxic pollution that hopefully you never have to see? A consumerist ethos backed by military might, sewing discord and terror around the planet? 

These are the things that must change, quickly, or the change we shall experience will be a very unpleasant human extinction.

Continuing on a thread here, we are bringing you more stories of change and innovation that are seldom covered by mainstream media. But then, we all know mainstream media is going extinct anyway, so who cares about that?

These stories have three things in common. They reverse climate change by gaining new respect for the element carbon upon which all life depends. They are powered by human ingenuity, working as part of, not against, nature. They are driven and emboldened by the astonishing, illimitable, force of youth.

In the rural regions of the world, particularly in the tropics of Latin America, Africa and Asia, precious vaccines and medicines that need to be kept cold wither and spoil in the heat of the midday sun.

It’s not merely a lack of refrigeration but also a lack of electricity and the lack of money. Clinics must often store vaccines for days or weeks before they can be administered to those arriving from distant villages. Keeping live cultures fresh for such a long time is nearly impossible without being able to lower storage temperature. Every year, vaccine spoilage costs billions of dollars and impacts millions of lives.

In 2009 a team of Engineering Students from Michigan State University traveled to a workshop organized by the Appropriate Technology Collaborative in Quetzaltenango, Guatemala. Their task: a refrigerator that can be built from locally available materials almost anywhere and run without power.

Design an adsorption refrigerator capable of maintaining a temperature between 2°C and 8°C that utilizes passive solar energy and can be built in developing countries. The team’s final product will be a clear and comprehensive set of instructions for building the device.

The students built a vaccine refrigerator that does not use electricity. It does not have any moving parts. You simply place it in the sun and it chills or freezes things.

ATC Solar Vaccine Refrigerator
This very remarkable machine runs on pyrolytic carbon. The char does not need to be food grade, as for biochar or activated carbon. It stays inside a closed loop. It could be cascade carbon from a variety of feedstocks. Its essential service is evaporative cooling. The total cost for the prototype was $917.39. Estimated worker cooperative production cost at the scale of three per month, including labor, would be under $300. Their report reads:
Based on the design decision matrices, a solar-powered adsorption refrigerator was selected for the design of the vaccine refrigerator. This refrigerator has no moving parts aside from a few valves. It uses no toxic materials, generally available materials, and should be simple to build and operate. The refrigerator has an intermittent cycle. It will “charge” during the day and remove heat from a cooling volume at night.

Some previously used adsorbent/refrigerant pairs used for solar adsorption refrigeration systems are zeolite and water, silica gel and water, activated carbon and methanol, activated carbon and ammonia, and activated carbon and ethanol. It has been determined that the performance of each pair depends greatly on the climate in which it is tested.

The students looked at all of these adsorbents and the most promising were methanol and ethanol. Methanol is highly toxic and difficult to handle while ethanol is easily obtained from alcoholic beverages in most places, so ethanol became the refrigerant of choice.

The kind of carbon needed has to be able to adsorb ethanol in its vapor form almost instantaneously, so a well-developed pore structure. There are three kinds of pores in pyrolyzed carbon:
  1. Macropores (>500 Angstrom*)
  2. Transitional Pores (20–500 Angstrom)
  3. Micropores (0–20 Angstrom)
*Angstrom = 0.0000001 mm.

Macropores are mostly used for water filtration systems and treating solid waste. Transitional Pores are more suitable for adsorbing large molecules, such as in soil remediation or to remove discoloration. Micropores are the most useful for trapping vapors of any kind.

When analyzing different kinds of activated carbon for this project, there are two main parameters which must be given great consideration. The porosity or the abundance of micropores, and the grain size of the carbon. Powder carbon is not very useful for our application due to its hard handling characteristics. Although more surface area can be achieved with powered carbon, it is difficult to package inside the adsorber bed. Therefore, activated carbon of granular form is preferred instead. The larger grain size makes it easier for packaging inside the adsorber bed and allows the design to be more flexible.

The refrigerator has three parts: collector, condenser, and evaporator. At the top is an adsorbent bed/solar collector — a flat tray of wood filled with activated carbon, oriented towards the equator to catch the sun. The entire energy input for the system is solar radiation. As the temperature rises in the morning hours, vapor is rejected out of the charcoal bed. The vapor is forced into the condenser from the pressure of desorption (it is a sealed system). Refrigerant moves from condenser to surrounds, gives off its heat and returns to liquid form.

At night, as the carbon bed cools, its capacity to adsorb vapor increases and the fluid in the condenser is drawn back into the evaporator. As it begins to vaporize in the warm evaporator, it provides the cooling effect. Once the adsorbent bed has reached capacity, it awaits sunrise and the cycle begins again. Meanwhile that “coolth” is circulated into an insulated cooler where the vaccines are stored, lowering its temperature for the following day.

A somewhat simpler charcoal refrigeration example comes from the women of the Bidii Farmers Group in the arid Kambi Sheikh Village in Isiolo County, Kenya. Using charcoal, a wire mesh and a water tank, the women have made an innovative cooler to store their produce for market. Explains Catherine Wanja,
“Charcoal is an ideal material for refrigeration because it has pores, which absorb and store water. This reduces heat from outside. And because wet charcoal does not allow easy passage of heat, it results in low temperatures inside the cubicle.”

Kambi Sheikh Cooperative Charcoal Cooler
The cooler is made from charcoal filled in between six-inch cavity with double wire mesh walls.
The roof is made of iron sheets and is also filled with charcoal. It has a network of perforated water pipes going round the top of the charcoal walls. The pipes are gravity fed water from an overhead tank. The water continuously drips — like a drip irrigation system — all the way to the bottom of the charcoal wall where it can be collected again.

Temperatures in the walk-in fridge drop as low as 8°C (46°F). Wanja says the fridge has a capacity of 20 crates of produce. “Today if the canter that collects the French beans does not come, we are confident that we will not make losses,” she says.

“It is a simple technology that is working for us because we do not have electricity here and we cannot buy a conventional fridge.”

With an increasing number of heat waves, would not having a ‘char-conditioned’ house fifteen degrees cooler provide a bit of relief? Evaporative cooling walls are not a new but generally made from materials with a much higher embodied energy and more limited lifespan than homemade biochar. Carbon can also filter runoff while boosting the resilience of living roofs, not just on homes, but on barns, animal sheds, grain silos, and aquaponic shelters.

Once a cooler, or a building, is chilled by the heat of the sun, there’s the challenge of retaining that coolth through the 24-hour cycle — and longer if the sun doesn’t shine every day where you are. Carbon is coming to the rescue.

Aerogels have recently become hot science. A “multiwalled carbon nanotube aerogel” dubbed “frozen smoke” with a density of 4 mg/cm3 lost its world’s lightest material title in 2011 to a micro-lattice material with a density of 0.9 mg/cm3. Less than a year later, aerographite claimed the crown with its density of 0.18 mg/cm3 and less than a year after that, a new aerogel made from graphene was created by Gao Chao’s team at China’s Zhejiang University. This ultra-light aerogel has a density lower than that of helium and just twice that of hydrogen — just 0.16 mg/cm3.

“With no need for templates, its size only depends on that of the container,” said Prof. Gao. “Bigger container can help produce the aerogel in bigger size, even to thousands of cubic centimeters or larger.”

The result is a material the team claims is very strong and extremely elastic, bouncing back after being compressed. It can also absorb up to 900 times its own weight in oil and do so quickly, with one gram of aerogel able to absorb up to 68.8 grams of organics per second — making it attractive for mopping up oil spills at sea.

Aerogels infused with a plastic material are flexible, like a spring that can be stretched thousands of times, and if the nanotubes in a one-ounce cube were unraveled and placed side-to-side and end-to-end, they would carpet three football fields. Carbon aerogels are also excellent conductors of electricity, ideal for sensing applications and will be finding their way into many electronic devices, like smartphones that bounce harmlessly if dropped. This new form of carbon — diverted from landfills and incinerators — will soon be revolutionizing diapers, sanitary napkins, protective packaging and building insulation.

For inexpensive thermal insulation aerogel, scientists at the National University of Singapore have found a new source — old clothing. Recycled cotton and similar natural fibers can make an ultralight material to keep vaccine refrigerators, beverages, and high rises cold, and also, just by the way, to control bleeding from deep wounds.

Professors Hai Minh Duong and Nhan Phan-Thien say their process is “fast, cheap and green” (about 20 times faster than it takes to fabricate conventional aerogels) — similar to the process by which they previously produced an aerogel from paper waste.

To stop battlefield wounds from bleeding, medics inject mini cellulose-based sponges with a large syringe. Once in the body, they absorb blood and expand, applying pressure to the wound from the inside and stopping blood flow within about 20 seconds.

“Each cotton aerogel pellet can expand to 16 times its size in 4.5 seconds — larger and more than three times faster than existing cellulose-based sponges — while retaining their structural integrity,” says Duong. “The unique morphology of the cotton aerogels allows for a larger absorption capacity, while the compressible nature enables the material to expand faster to exert pressure on the wound.”

The production process is simple — mixing water with carbon fibers from cotton, paper, or whatever, then adding a polymer resin and applying sound energy to agitate the solution. Next, the mixture is poured into molds and frozen at -18ºC (0ºF) for 24 hours, after which it’s freeze-dried at -98ºC (-144ºF) for two days. Finally, it’s cured in an oven at 120ºC (248ºF) for three hours. The final result is an opaque biodegradable, recycled material that is non-toxic, flexible, mechanically strong and oil- or blood-absorbent. As a thermal insulating jacket for canteens, it can maintain its contents without freezing even after when stuck in ice. Its the perfect media to store vaccines in a solar refrigerator.

How do aerogels meet our third common thread — driven and emboldened by youth? They were invented by two students, Sam Kistler and Charles Learned, in a college lab using borrowed equipment.

The manufactured goods these discoveries can replace are fossils that pollute and could operate without guilt or compunction only in that careless heyday before the Dawn of the Anthropocene. We have come now to the Age of Consequences when such foolishness must be put behind us.

Inexpensive carbon aerogels made from recycled paper, cloth, and virtually any other carbon source, storing medicines in carbon-cooled passive refrigerators, beckon cascades of opportunity to the circular carbon economy that is coming like a entrepreneurial tsunami. This is how it will end — not with desperate migrations of small bands of hominid survivors poleward to seek final solace, like Dr. Frankenstein’s monster on a melting ice floe, but with a banquet of wonders served by brilliant young minds driven by single-mindedness of purpose.

Thanks for reading! If you liked this story, please consider sharing it around. Our open banjo case for your spare change is at Patreon or Paypal. This post was a collaborative effort between Albert Bates and Kathleen Draper and is likely to be included in Carbon Cascades: Redesigning Human Ecologies to Reverse Climate Change from Chelsea Green Publishers later this year (the book is free to our sponsors).




The Great Change is published whenever the spirit moves me. Writings on this site are purely the opinion of Albert Bates and are subject to a Creative Commons Attribution Non-Commercial Share-Alike 3.0 "unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, n on-commercial use, and share alike: Attribution (BY): You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC): You may not use this work for commercial purposes. Share Alike (SA): If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. Therefore, the content of
this publication may be quoted or cited as per fair use rights. Any of the conditions of this license can be waived if you get permission from the copyright holder (i.e., the Author). Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. For the complete Creative Commons legal code affecting this publication, see here. Writings on this site do not constitute legal or financial advice, and do not reflect the views of any other firm, employer, or organization. Information on this site is not classified and is not otherwise subject to confidentiality or non-disclosure.