Sunday, February 25, 2018

My Tesla Runs on Banana Peels

"Batteries from carbonized biomass can come from sources as simple and abundant as green algae, bamboo, olive pits, and banana peels."


 

These days there is a lot of interest in biomass as a substitute for fossil fuels, the idea being to get off the 500-million-year savings account and into the checking account that comes from sunshine in order to stop screwing with the atmosphere. This likely won’t work if the biomass is grown in lieu of either food or forested ecosystems. It has to come from carbon wastes. Fortunately there is no shortage. It also won’t work if the biomass is just burned, sending long-lived greenhouse gases skyward. The only way it can work is if the biomass is converted to stable biochar, with energy and potentially food as (profitable) byproducts.
Put biochar in the ground, and regardless who the next farmer is, or what the weather decides to do, the biochar carbon will stay in the ground. That is possibly our strongest asset in relation to other options that are only as good as the management that maintains them. Forests can be bulldozed, soils can be ripped up and oxidized, biochar is stable in soil.
— Josiah Hunt
The amount of thermal energy or electricity produced during that conversion is variable, depending on the energy potential of the biomass and the process. The types of machines used are typically divided between CHAP (combined heat and power) and CHAB (combined heat and biochar). CHAP is mostly carbon neutral (depending on transportation distances) and CHAB is carbon negative, or net drawdown, as long as the product — biochar — is not reused as a fuel.

from The Biochar Solution (2010)
 In many production systems the waste heat is used to good advantage. Thomas Harttung’s farm in Denmark — the largest subscription farm in Europe —  uses it to heat greenhouses. The Pyreg unit in Stockholm uses it to warm air in the winter and water in the summer for district air conditioning.

Some biomass energy equipment also produces pyrolysis oil, also known as wood vinegar, biocrude or bio-oil, that can be burned in boilers, furnaces or turbines, or transformed into useful chemicals, plastics and adhesives.

Wood gas, also called producer gas, is a type of synthesis gas (syngas) that can directly power internal combustion engines, gas furnaces and stoves the way gasoline or diesel does. Syngas can generate electricity with lower emissions than fossil fuels, although with full cycle costing you can’t say its carbon negative.

Biomass can also be gasified chemically. Argonne National Labs discovered that adding small amounts of biochar to anaerobic digesters can boost both the quantity and the quality of methane. This process led to municipalities being able to reduce contaminants from sewage sludge, and that’s led to pipeline-quality methane for power and transportation fuel.

At the COP23 summit in Bonn, Bronson Griscom told a crowd that the maximum drawdown potential of all natural pathways, over and above what they already accomplish, could be as much as 37.4 gigatons of CO2-equivalent at a 2030 reference year. All human activity today releases about 37 gigatons, so Griscom said, essentially, we can neutralize that with biochar, forests, and wetlands. Then, cut emissions and we can return the atmosphere to the way it was before fossil fuels came into widespread use.

The economics of Griscom’s plan, however, do not pencil out. This is true of many such plans. Planting new, climate-hardy forests over the available 1780 million hectares of marginal lands is not an inexpensive undertaking. Also, applying biochar to soil rejuvenation at the rate of several billion tons per year would likely run out of forestry wastes, at least in the near term. 

Adding sensitive plantations (willow, bamboo, vetiver, miscanthus) or ecosystem-optimized forestry rotations (milpa, coppice, step-harvest low-grading) would expand the feedstock reservoir. That strategy is more about social permaculture and community building than legions of government-paid tree-planters.
But here is the kicker. If you put your biochar in concretes, asphalts, composites, or electronics you can then employ municipal wastes and industrial wastes that greatly expand the available biomass supply. In our forthcoming book we call these carbon cascade enterprises. They make carbon drawdown so profitable as to eliminate the need for credit exchanges. Consider a few examples.

The quest for larger and longer storage capacity has researchers and investors frothing because batteries are the key to kissing fossil fuels good-bye once and for all. Besides capacity and discharge time, batteries need to be durable, fast charging and cheap. They also need to operate at ambient temperatures year-round, in nearly all climates.

Hydrogen has long been looked upon as a promising energy storage medium for transportation but the special qualities of hydrogen — the lightest and easiest-to-combine of all elements — have proven challenging. Fortunately, we now know that hydrogen stored in the pores of a biochar sponge is less likely to escape its confines and even less likely to combust in the tank (or body panels) of your car or the wing-reservoir of a commercial jetliner.

Supercapacitors (also known as ultracapacitors or supercaps) store energy as static charge rather than chemical charge. They are quickly replacing chemical batteries because they are lighter, faster charging and longer lasting. They can be recharged thousands of times without much capacity loss, and they have a broader temperature performance range.

This kind of storage is particularly good for products that require many charge/discharge cycles for relatively short-term power needs — consumer electronics, braking systems, and data storage, for instance. Graphene and activated carbon are already used in capacitors but biochar is coming in at a lower price point. This is helpful for biomass energy producers and indirectly for farmers and foresters.

What makes low-tech, easily sourced biochar economically viable without government subsidies or carbon credits are the carbon cascades. The same biochar might first filter out heavy metals such as nickel in wastewater. Charged this way, it is twice as effective as plain biochar as the dialectic between the two metal conducting plates. It shows almost no loss of capacity after 1000 cycles.
Biochar from pyrolyzed alligator weed, an aquatic invasive species found across the globe, shows even longer durability, lasting more than 5000 cycles without losing capacity.

Storing energy electrochemically has been dominated by lithium ion batteries for more than two decades. They power Nike+ FuelBands, Apple Watches and Teslas. They move electrons from one side, or electrode, to the other to charge, then reverse the direction to power. The negative side is known as an anode and is generally made of carbon. The positive side is called a cathode and is usually a metal oxide. The catalyst is called an electrolyte — in this case lithium salt in an organic solvent. Although Li-ions have a fairly long life (~1200 cycles), they are pricey and have a relatively low energy density so using them for larger applications has been difficult.

The new kid on the electrochemical battery block is the lithium sulfur battery. It packs five times more energy, is lighter and cheaper, but there’s a catch. Li-S suffers rapid capacity fade. It can only charge/recharge 50 to 100 times due to something called the shuttle effect — basically a meet-up of polysulfides.

Carbon to the rescue! High porosity carbon such as cherry pit biochar activated with phosphoric acid is beginning to improve the prospects for longer lived Li-S batteries. Cherry char traps polysulfides.


Batteries from carbonized biomass can come from sources as simple and abundant as green algae, bamboo, olive pits, and banana peels. All those feedstocks have been optimized in trials to increase surface area at lower cost, producing anodes with better conductivity and less charging time.

The world of 3D printing materials is changing by the day. Filament materials are no longer limited to just plastics and metals but might include ceramics, paper, sugar — even seaweed. Today carbon in its various forms is a versatile and regenerative feedstock. For its part, 3D printing helps put carbon where it needs to be.

We are about to dive into the weeds here, so a quick chemistry lesson:

Oxidation is the loss of electrons or an increase in oxidation state by a molecule, atom or ion; reduction is the gain of electrons or a decrease in oxidation state. As an example, during the combustion of wood, oxygen from the air is reduced, gaining electrons from the carbon. Although oxidation reactions are commonly associated with oxides, oxygen is not necessary. Other chemical species can serve the same function.

The reaction can occur relatively slowly, as in the case of rust, or more quickly, as in the case of fire. The oxidation of carbon to yield carbon dioxide (CO2) or the reduction of carbon by hydrogen to yield methane (CH4), and more complex processes such as the oxidation of glucose (C6H12O6) in the human body are all examples of this oxidation-reduction reaction.

Microbial fuel cell technology captures the exudates of microorganisms to generate electricity, even while they serve their essential function of digesting and transforming organic matter. First discovered a century ago, MFCs only began to leave the lab and find practical applications in the 1970s. Most MFCs contain a membrane to separate the compartments of an anode (where oxidation takes place) and a cathode (where reduction takes place). The electrons produced during oxidation — when the microbes break down oxygen-containing food — are transferred directly to an electrode or to a redox (short for reduction–oxidation reaction) mediator. The electron flux is moved to the cathode and stored as useful power.

The charge balance of the system is compensated by ionic movement inside the cell, usually across a membrane. Most MFCs use an organic electron donor that is oxidized to produce CO2, protons and electrons. Petroleum hydrocarbons, solvents like vinyl chloride, and soil organic matter are all compounds that can be electron donors. The cathode reaction brings together a variety of electron acceptors that can reduce oxides, metals, sulfates or nitrates; or change water to hydrogen and oxygen.

Meghana Rao, who dazzled us as a High School sophomore from Beaverton, Oregon at the Sonoma Biochar Conference in 2012, delivering a PhD level talk on the effect of particle size and feedstock on physical and chemical stability of biochar, returned for an encore at the Amherst Biochar Conference in 2013 as a much older 17-yr-old High School junior, having by then presented in Kyoto, Japan, final-ed at the Intel International Science and Engineering Fair, had 15 minutes with President Obama to better educate him on the climate restoring value of biochar, and then been named Young Naturalist of the Year by the American Museum of Natural History. Her presentation in Amherst, which was again jaw-dropping, was on the “Novel Implementation of Biochar Cathodes in Microbial Fuel Cells — Phase I.”

Having earlier noted the high surface area and cation exchange capacity of biochar, she began conducting a longer study on replacing platinum and rare earths in fuel cells with biocathodes. Preliminary results suggest biochar is somewhat less efficient (10–15 percent) but up to 400 times more cost-effective and of course can be recycled from or to later uses, such as water filtration, toxin-scavenging, or as an organic soil amendment.

This past week the Journal of the Electrochemical Society previewed an article accepted for its May issue entitled Flexible and Self-Healing Aqueous Supercapacitors By Polyampholyte Gel Electrolytes with Biochar Electrodes and Their Unique Low Temperature Properties. You know you are not a bubba when you actually enjoy reading stuff like this, right?

Author Hyun-Joong Chung of the University of Alberta says that he created a flexible and self-healing supercapacitor with 3 times the normal energy density (50 Wh/kg at room temperature) with 90% capacitance retention after 5000 charge-discharge cycles. The electrode material was biochar produced from biological wastes (could be banana peels, but he didn’t say).

Pyrolyzed carbon film is now finding applications as working electrode material for electrochemical impedance biosensors. Batch-fabricated by photolithography, smooth thin film carbon electrodes can be inexpensively produced that have electrical resistivity comparable to that of highly boron-doped polysilicon. This opens new approaches for miniaturization, circuit integration, and low-cost fabrication in electrochemical biosensors.

In microbial fuel cells, carbon can function as both an electron donor and an electron acceptor. This is no small advantage. It means that rather than having to be continuously fed, the MFC can operate on a closed cycle. Biochar is its own redox pair. A 2018 literature review for the journal Bioresource Technology found that:
Biochar can be used as an environmentally-sustainable electron donor, acceptor, or mediator. It can enhance the reduction of oxidized contaminants and participate in elemental cycling in terrestrial, groundwater, or waste water ecosystems. We illustrated that it is possible to tailor the redox characteristics of the biochar by selecting specific feedstocks, pyrolysis temperatures, and post-treatments. Further understanding of the factors impacting these redox properties will allow production of biochars for specific redox applications.
Imagine now that the 3D printers of the future, being designed in the science laboratories of high schools, even as you read this, employ filament feeds and feedstocks made of industrial wastes digested and decontaminated by microbes that in the process supply the electricity required for the printing. And when it is done and the printed object served its purpose, it can go back to feeding more microbes and producing more energy and supplying another printer somewhere to make an entirely different object. This is the way a proper carbon cycle goes: not point A to point Z — petrofuel to pollution. Instead, around and around.





Thanks for reading! If you liked this story, please consider sharing it around. Our open banjo case for your spare change is at Patreon or Paypal. This post was a collaborative effort between Albert Bates and Kathleen Draper and likely is to be included in Carbon Cascades: Redesigning Human Ecologies from Chelsea Green Publishers later this year. Since neither of us are physicists, we are hoping you, dear readers, will spot our errors and offer corrections.

Sunday, February 18, 2018

Breathing Highways and Sponge Cities

"We could do worse than to go back to the way nature manages rainfall."


During the 20th Century, the rate of global warming was twice as fast in Taiwan (1.7°C) as for the world as a whole (0.74°C). Partly as a result, the number of days with rainfall decreased dramatically and typhoons gained strength. In 2009, Typhoon Morakot dropped over 1,000 mm (39.4 inches) in a single day and caused the loss of 699 lives. A massive mudslide wiped out Xiaolin Village and 474 people were buried alive. In 2015, Typhoon Soudelor left similar damage. It took months to repair the roads.

Then Taiwan and East China were struck by Dujuan, known in the Philippines as Typhoon Jenny, a killer storm and the thirteenth typhoon of the 2015 Pacific typhoon season. Eight months later, Nepartak became the third most intense tropical cyclone on record with 114 deaths and more than $1.5 billion damage in Taiwan and East China. September brought Meranti, a super typhoon and the strongest ever to make landfall in China in more than 1000 years of records. Meranti’s peak sustained winds tied the record set by Haiyan in 2013, 195 mph (315 km/h), comparable to a tornado, or a Category 5 hurricane on the Saffir-Simpson scale. In Taiwan, nearly 1 million households lost power and 720,000 lost water supplies. Flooding in Zhejiang took 902 homes and affected 1.5 million people.

Between those punctuations, the erratic weather brought long droughts. New Taipei City had to enforce water restrictions when the Shihmen reservoir went dry in April. All cities along coasts or rivers have engineered means to remove excess water and to prevent flooding. Few have the means to sustain themselves in severe droughts.

As a city develops, the soil is slowly covered by hardscape. There is less and less water infiltrating through to reach soil. Typically cities build a drainage system that directs water out. During times of typhoons or heavy rainfall the level of external water in rivers may rise, so floodgates are closed to prevent external water from gushing in. Pumping stations swing into action to take the excess water out. If the level of rainfall exceeds the pumping stations’ capacity, the city floods, like New Orleans during Hurricane Katrina or New York during Superstorm Sandy.

We could do worse than to go back to the way nature manages rainfall. That was the inspiration of a Taiwanese road construction engineer, Jui-Wen Chen. His idea is to build a “permeable city” that allows internal water to infiltrate into the soil and return the natural water cycle.

In conventional road-building there are two kinds of suitable materials to allow a hard surface to drain: porous asphalt and porous concrete. Between the two, porous asphalt is more commonly used and has the longest history. It uses larger-graded aggregates in the asphalt mixture to increase the porosity, which allows water to infiltrate into the soil through the gaps. The other type is interlocking blocks that join together, forming small gaps between and allowing water to infiltrate. A wide variety of materials can be used as interlocking blocks, such as rocks, concrete bricks, permeable bricks, grass bricks, and others.

Jui-Wen Chen said that he was not a scholar, did not study a lot and could not understand the research on this topic written in other languages. As a boy he gave up on schooling and only graduated from junior high school. Although he had extensive experience of road construction in Taiwan, he had no knowledge of the current popular trends elsewhere in the world.

He considered that a good thing. When we met at the UN climate conference in Paris, and later at COP-22 in Morocco, he told us through a translator he was not limited by others’ ideas and was able to invent his own. He explored what interested him, thought creatively and acquired whatever skills and materials he needed to experiment.

When Jui-Wen Chen was a child he had allergies, but he could control them if he stayed away from places where pollen and dust were high. Then his own child developed a more severe condition than his and needed to go to the hospital regularly to receive treatments.

Over the years, Mr. Chen noticed there were more and more children suffering from similar allergies. The doctor told him it was mainly due to the increased levels of pollution. The doctor pointed to the road construction outside and explained that, with all the digging and paving, road construction could be one of the causes. Jui-Wen Chen was shocked to hear that his successful career may actually have contributed to his son’s suffering.

Realizing this, Chen became more sensitive to the impact of air pollution on human health. He also learned how his roads were having negative effects on marine life from the street runoff that ran into rivers and the ocean.

Then came the spate of super-typhoons and Chen noticed that, even with a higher embankment protecting the city, it would still flood because water was not able to discharge. The city kept building more pumping stations, but it cannot cope with a storm that can dump more than one meter per day.

Jui-Wen Chen started to think that maybe he could invent a new type of roadway to solve all these problems. He slowly formed the idea of making roads a part of the city’s drainage system.
He asked himself many questions. Can permeable pavement actually allow water to get to the soil? Would building a hard roadbed lead to more runoff? If the roadbed were soft, would it cause soil liquefaction when an earthquake hits? Would a soft pavement be able to withstand the weight of the road, or would it break during high traffic volumes?

From his construction experience, Chen knew that using reinforced concrete with embedded steel bars would be the most structurally stable and durable. A reinforced concrete structure does not need to compact soil below, like asphalt does, but only requires a layer of leveled gravel for support. To make pavement with high permeability, Chen came up with the idea of changing the steel reinforcing bars into steel pipes so that whenever it rains, the water could drain into the pipes and infiltrate through the loose gravel and then into the soil. His concept of an air-circulating aqueduct assembly was born.

The system Jui-Wen Chen invented is called an “aqueduct grate.” It is neither permeable porous pavement nor permeable interlocking pavement.

Steel pipe posed more problems, however. Pavement needs to withstand the test of time. Steel bars are susceptible to rust. Once the rust starts, the bars rupture and expand, resulting in cracks in the pavement and weakening its integrity. In his search for the perfect material, Jui-Wen Chen tried and failed with many. One after another — iron, aluminum, copper and more. And then he tried carbon.

Specifically he tried polypropylene — (C3H6)n.

Carbon was first made into a crystalline isotactic polymer in 1954. After polyethylene, polypropylene is the most important plastic, with revenues expected to exceed $145 billion by 2019. The sales of this material are forecast to grow at a rate of 5.8 percent per year until 2021. In isotactic polypropylene, the methyl (H) groups are oriented on one side of the carbon backbone. This arrangement creates a greater degree of crystallinity and results in a stiffer material, tough, flexible, and with good resistance to fatigue. It can resist both acidic and alkaline chemicals; it is structurally strong; and it can withstand heat as high as 140°C and cold as low as -40°C.
 
Chen resolved to make his aqueduct grate system from recycled plastics.The structural mechanics of the pavement would allow the weight to be evenly distributed, even for a load as heavy as a tractor-trailer truck hauling stone.

Jui-Wen Chen later added, “I didn’t expect to see such a perfect match of these two distinct materials, concrete and plastic, in road construction.” The carbon did not corrode the way steel does, nor did it expand and contract with temperature change. The concrete was more stable with carbon than steel, and would remain that way for a longer time.

 Jui-Wen Chen shopped around the city for women’s shoes to test his design. He designed pipe openings small enough to be safe for most high heels. To prevent silt buildup that might block the pipes, he designed the pipe ends as a cone — wide down below and narrow at the top. When cleaning the street, a pressurized water jet can easily and quickly wash the dirt down to the gravel layer.

To maximize the level of air-circulation in his Aqueduct Grate, Chen alternated narrow pipes and wide pipes. The narrow pipes allow water drainage into the gravel and soil where it will help create a suitable environment for microorganisms that clean the city air. Then, using the Bernoulli principle, the clean air and moisture move back to the atmosphere through the wide pipes. Chen thinks his design will play a significant role in reducing urban air pollution.

To the gravel layer under the pavement Mr. Chen added “water retention balls,” each about the size of a ping-pong ball. These are hollow, recycled plastic balls with perforations around their circumference. Chen asked us not to underestimate the look and design of these water retention balls — they have an astonishing impact.

At 0.5m height, the averaged level of CO2
over the JW pavement is about 84% lower than
that over the non-JW pavement.
The water retention balls are added into the gravel layer, about 30 percent by volume to the gravel. Rainwater can make its way into the balls through the perforations and that increases the amount of water that can be stored underneath the surface of the pavement. Microorganisms thrive in the hollow spaces, cleaning both air and water.

Depending on the needs of each area, there are five different types of water retention balls:
  • Red balls: completely hollow balls for increased water storage.
  • Green balls: filled with absorptive carbon — ashed rice hulls — to provide nutrients and a suitable environment for microorganisms.
  • Blue balls: filled with sponges to retain water for long dry periods.
  • Black balls: filled with biochar to detoxify water and air from heavy metals and other pollutants, and to encourage microbial diversity.
  • White balls: filled with the topsoil taken up from that pavement site, to return the ecosystem and microbial life to its original health.
Jui-Wen Chen formed a company called JW Eco-Technology and started to market his “Structural Pervious Pavement” with several features that predecessor eco-pavement products had not been able to accomplish — heavy load bearing, low-maintenance, long term durability and ecological habitat. His pavement is a sandwiched system of multiple layers serving complementary functions. The top layer is concrete reinforced with the Aqueduct Grate to withstand high traffic volumes while drawing down water. Surface texture and color can be selected or changed as desired.

The gravel layer with water retention balls provides space for microorganisms and for both air and water to circulate. The pavement can become an air-conditioner using the moisture beneath the pavement to chill summer heat or melt snow in the winter. Finally, using the water it stores and the fertilizers the organisms create, the system builds healthy soils directly beneath the road.

Jui-Wen Chen’s urban planning passion has now advanced to what he calls his “Sponge City,” with terraced retaining walls, waterways, porous pavements, lakes and urban aquaculture irrigating urban farmland. By using his porous roads and tracks around the city, the land will become a reservoir all by itself. Farmers will have a constant supply of water and no need to deplete limited supplies in times of drought.

Mr. Chen’s work reminds us that it is only by finding a way to live peacefully with the natural world can we resolve the crisis caused by global warming and other negative effects of cities.
Jui-Wen Chen is a talented inventor pushing out the frontier of the carbon revolution. His work reflects his concern for people and planet, and he constantly tries to find the best way for humans and the natural world to return to living peacefully together.

The next step to cascade Mr. Chen’s pavement might be for each city to produce its own biochar. The city of Stockholm, Sweden is likely the first large city piloting an urban pyrolysis-based biorefinery. The Stockholm Biochar Project, one of 5 winners of the 2014 Bloomberg Mayor’s Challenge and recipient of $ 1 million in prize money, is carbonizing the city’s green waste and making the biochar available to city residents and for municipal landscaping.

Bjorn Embrén, Stockholm’s Tree Officer, has been using biochar successfully for nearly 10 years to improve urban forest survival rates and enhance growth. Looking to source more locally produced biochar, Embrén and a colleague, Jonas Dahlof, who heads up planning and development for the city’s waste disposal, developed a plan for converting park waste into biochar and using the excess heat to feed into the city’s district heating system.

Stockholm also significantly improved its stormwater management, demonstrating what Mr. Chen has been saying. Stockholm’s stormwater, like Taipai’s, is contaminated with total suspended solids, nutrients, heavy metals, PAHs, E.coli and other substances. Stockholm found it could mitigate many of these problems by installing biochar beds along roads and drainages. It found that different types of char are more effective at filtering different types of contaminants and that it can also increase hydropic conductivity — infiltration of water into soil.

Particle size and pore size distribution matter, and both are boosted with higher temperature kilns. Finer sizes may be better for sandy soils, while courser particles may be better for soils with high clay content. Higher temperatures can also produce biochars which are less hydrophobic.

In 2014 the U.S. Environmental Protection Agency (EPA) invited the Stockholm team to Washington D.C. to explain how carbon-structured soils has saved their city money and cut pollution.

Stormwater can be captured and treated in catch basins, French drains, porous sidewalks, rain and roof gardens, swales, storm drain channels and wetlands. Researchers at the University of Delaware are designing ways to incorporate carbon catchment into the greenways along highways. That will reduce the need for state and local governments to buy additional land for stormwater treatment right-of-ways, potentially saving millions of tax dollars and rescuing coastal cities from the nightmare storms climate change still has in store for the 21st century.


Thanks for reading! Please consider sharing it around. My open banjo case catching for your spare change is at Patreon or Paypal. My next book is Carbon Cascades: Redesigning Human Ecologies, due out from Chelsea Green Publishers later this year.




Sunday, February 11, 2018

Junk Food for Salmon

"For the geoengineering set, all this news provides an opening for more advanced biotech ."

What about seeding the oceans with iron in the deficient parts — the places that are deficient in iron and they have a lot of the other nutrients — a little bit of iron, we get a phytoplankton bloom, it pulls out huge amounts of CO2, it stimulates marine growth, all the way up the food chain? 
You know, most of the oceans are vast deserts. There is an idea of using buoyant flakes. If you google climate envisionation, William Clarke, he’s an Australian inventor, buoyant flakes. You have something like rice husks, something that floats, and you lace it with nutrients that are deficient in the ocean and these things just float around. They will float for about a year and then they will die and sink. They are releasing nutrients wherever they go and they can stimulate phytoplankton growth. Something like that can absorb enormous amounts of CO2 from the atmosphere. Something like that has a lot more realism than the IPCC favorite horse, which is bioenergy with carbon capture and storage — BECCS — we just don’t have enough land for that. And that is part of the RCP (Representative Concentration Pathway) 2.6 of the IPCC report, which can only be reached if we remove CO2 from the atmosphere.
— Paul Beckwith, Radio Ecoshock: Weather Bomb (February 7, 2018)





One of the straws being grasped by desperate industrial addicts in the throws of climate panic is the chimera of ocean fertilization. The idea is that iron spread upon the waters could fertilize plankton blooms. That could increase the removal of CO2, as the plankton draw carbon to build their cells and then die and sink, interring their carbon on the muddy ocean floor.

Scientific review bodies, such as the Royal Society of the UK or the National Oceanic and Atmospheric Administration in the US, have thrown cold water on this idea. Most of this uptake is transient; long-term sequestration is difficult to assess; there are doubtless unintended consequences at scale and some of those may be far removed in space and time; and there is no regulatory framework in place, let alone a scientific protocol. 

That hasn’t stopped rogue geoengineers from taking the matter into their own hands. In July 2012, two hundred thousand pounds of iron sulphate were dumped into North Pacific Ocean by the Haida Salmon Restoration Corporation, under the direction of Russell George, founder of the San Francisco based firm Planktos Inc. which claims to “restore ecosystems and slow climate change.” 

The dumping violated the United Nations Convention on Biological Diversity and the London Convention on the Dumping of Wastes at Sea which include moratoria on geoengineering experiments. Search warrants were executed by Environment Canada’s enforcement branch on George’s office after the Haida nation ended George’s employment, but no further legal action was taken.

Then in 2013, the west coast of North America experienced its largest salmon return and subsequently its largest commercial salmon harvest in history, from 50 million to 226 million fish. Commercial fisheries were opened in areas that had not seen a commercial trade since the 1960s. In 2014 the Fraser River experienced its second largest sockeye salmon return in history while the Columbia River recorded its largest salmon run of all time. The Haida were ecstatic.

We don’t know whether those salmon were a result of Russell George’s experiment or not, but there is another question that should be asked. How nutritious were those salmon? A Nordic science study reported:
Farmed salmon meat is naturally gray-white in color, and so to achieve the desired red salmon color, astaxanthin is added as a feed ingredient. In addition to being a vibrant pigment, astaxanthin is a powerful antioxidant found in algae and marine animals, and is also essential for the health of farmed aquatic animals.
Aud Skrudland is a veterinarian and special inspector at the Norwegian Food Safety Authority in the field of fish health and welfare.
She points to the main conclusion regarding fish health in the Food Safety Authority’s annual report, which states that “[t]he fish health situation is worrying. The aquaculture industry is still struggling with salmon lice problems, diseases, high mortality and inadequate emergency preparedness. The problems are hindering growth targets.”
***
In the past, more contaminants were found in farmed salmon than in wild fish, because the salmon feed was based on fish protein and fish oil, which added contaminants to the farmed fish diet. Today, salmon receive feed that is about 70% plant based, which has resulted in farmed salmon having a lower contaminant level than wild salmon.
Farmed salmon have a less favorable omega-6 and omega-3 fatty acid ratio than is found in wild salmon. But they still have some ability, especially early in life, to convert omega-3 from plants to the long-chain fatty acids EPA and DHA.
Skåre says that there is no nutritional difference between farmed salmon and wild salmon in terms of proteins, vitamin B12 and iodine.
However, farmed salmon contains a little less selenium, copper, zinc and iron.
If you order “wild salmon” in a restaurant, that may not be what ends up on your plate — especially during the out-of-season winter months.
A new report from the advocacy group Oceana found that 43% of “wild salmon” samples collected between December and March were mislabeled. And in restaurants during that period, this figure jumps to 67%. When fish imports make their way to the US, less than 1% of it is inspected to see if it’s mislabeled

In 2015, The Atlantic published a story claiming that 33 percent of fish the US market were mislabeled. The commercial fish industry came down hard on the magazine, forcing this retraction:
This piece originally stated that 33 percent of all seafood is mislabeled. In fact, 33 percent of the seafood Oceana tested was mislabeled, but their sample was not necessarily representative of the entire industry. We regret the error.
The Atlantic, however, let stand this statement:
Ninety percent of our fish is imported from countries with loose aquaculture laws, such as Thailand, Indonesia, Canada, China, Ecuador, and Vietnam. Some seafood from these countries may come mislabeled from unregulated fish farms.
In the salmon runs of British Columbia the regulators are overwhelmed: 
Having a dual mandate of both looking after the wild salmon as well as promoting fish farming, the government agencies in BC turn a blind eye to the real threat that open-net salmon farms pose for the wild salmon stocks. Sea lice — parasites that bloom in the open-net cages — rain down on the passing wild Pacific salmon smelt, as they swim by on the way to the ocean. The salmon feedlots also are incubators for infectious diseases, such as piscine reovirus (PRV), Heart and Muscle Inflammation (HSMI), and others that can reach epidemic proportions quickly and at any time in such monocultural environments. This happened in Chile in 2007, when a 3-year long outbreak of Infectious Salmon Anemia (ISA — a type of influenza) led to millions of farmed salmon being killed, thousands of jobs lost and major financial problems for the fish farming industry. In addition to the diseases and parasite infestation, there is also the need for predator control, with over 7,000 seals and sea lions shot and killed between 1990–2010 in BC, to stop them from taking salmon from the open-nets.
Still, there are more fundamental ecological issues to be considered in farming a predatory fish like salmon, which is high on the food chain and thus an inefficient protein source. Depending on the source of information, it takes between 1.2 and 10 pounds of fish feed and fish oil to produce one pound of salmon. Converting protein and nutrients derived from fish stocks being depleted in one part of the world into a supermarket-ready slab of artificially-colored pink flesh “salmon” is economically — never mind ecologically — indefensible.
In a stunning investigative report by Helena Bottemiller Evich, a senior food and agriculture reporter for Politico on September 13, research from Arizona State University where zooplankton were given more light to speed growth provides some strong evidence that rather than boosting food supply — both for humans and the marine food web — ocean fertilization may actually hurt it. Evich described the ASU findings:
  • Increased food (light) made surface algae grow faster, but they ended up containing fewer of the nutrients the zooplankton needed to thrive. By speeding up their growth, the researchers had essentially turned the algae into junk food. The zooplankton had plenty to eat, but their food was less nutritious, and so they were starving. The same effect moved up the food chain.
  • Plants rely on both light and carbon dioxide to grow. If shining more light results in faster-growing, less nutritious algae — junk-food algae whose ratio of sugar to nutrients is out of whack — then it seems logical to assume that ramping up carbon dioxide might do the same. This could already be playing out in plants all over the planet. What might that mean for the plants that people eat?
  • As best scientists can tell, this is what happens: Rising CO2 revs up photosynthesis, the process that helps plants transform sunlight to food. This makes plants grow, but it also leads them to pack in more carbohydrates like glucose at the expense of other nutrients that we depend on, like protein, iron and zinc.
  • Within the category of plants known as “C3”―which includes approximately 95 percent of plant species on earth, including ones we eat like wheat, rice, barley and potatoes―elevated CO2 has been shown to drive down important minerals like calcium, potassium, zinc and iron. The data we have, which look at how plants would respond to the kind of CO2 concentrations we may see in our lifetimes, show these important minerals drop by 8 percent, on average. The same conditions have been shown to drive down the protein content of C3 crops, in some cases significantly, with wheat and rice dropping 6 percent and 8 percent, respectively.
Among those testing the ASU findings was Lewis Ziska, a plant physiologist at the Agricultural Research Service headquarters in Beltsville, Maryland. Using samples of goldenrod collected by the Smithsonian Institution since 1842, Ziska found that the protein content of goldenrod pollen has declined by a third since the industrial revolution — a change that closely parallels the rise in atmospheric CO2 (and the decline of salmon and bears).

In 2014, led by Harvard climate researcher Samuel Myers, a team of scientists published a large, data-rich study in the journal Nature that looked at key crops grown at several sites in Japan, Australia and the United States. They found rising CO2 correlated to a drop in protein, iron and zinc.
For the geoengineering set, all this news provides an opening for more advanced biotech — why not simply engineer new varieties of wheat, rice, barley and potatoes that don’t lose nutrient density with higher CO2 exposures? Fortunately there is a much simpler, less costly, and far less risky approach. Let Mother Nature fix the problem.

Soil scientist Elaine Ingham says plants just need more cookies and cake.

Plant roots are putting out exudates all the time. These attract bacteria or fungi that can use those exudates and return to the plant whatever the plant needs. Ingham says
An exudate is something the plant is dumping out into the soil. It is mostly sugar, a little protein and a little carbohydrate. What does that sound like? Mmmm, cookies and cake.
Think of all these different kinds of cakes and cookies that the plant is giving away to attact soil microbes. They each will support a particular bacteria that can bring to the plant the needed nutrients from the inorganic material around them.
Whenever any of the first level predators — protozoa, “good guy” nematodes, microarthropods — eat bacteria or fungi, they release nutrients right there at the roots of the plants. These nutrients are then in soluble form, ready to be taken up by the roots of the plants. Chelated calcium ions stuck to proteins. Sulfur as sulfates. Nitrogen as ammonium. This is why those predators are essential.
The principal causes of the decline of wild Pacific salmon is land use change in the Pacific Northwest (from overpopulation) and climate change. Clear-cutting for centuries has led to the erosion of the riverbanks. Wood debris dammed up whatever streams had not already been dammed for hydropower and flood control. Choked by sediment and unable to get upstream, salmon lost their way and lost their breeding grounds. The nutrient density of inland plants suffered the loss of the salmon-bear-bird nutrition migration pathway.

But we know, dear readers of this space since 2006, that one of the best ways to build and protect that healthy soil food web is with biochar. We can’t offer that solution to those poor salmon the Haida caught, but we can easily give it to the plants people grow on land.

Those plants will be packed with nutrient density even as CO2 concentrations continue to march upwards. And that’s the more natural way, over the long term, to bring CO2 back down and salmon and bears back up.


Thanks for reading! Please consider sharing it around. My open banjo case catching for your spare change is at Patreon or Paypal. My next book is Carbon Cascades: Redesigning Human Ecologies, due out from Chelsea Green Publishers later this year.
 

Sunday, February 4, 2018

Follow the Money, Mr. Mueller

"“Ivanka got her father to bomb Syria by adroitly pushing his buttons. ‘Ivanka had long ago figured out how to make successful pitches to her father,’ Wolff writes. ‘He liked big names. He liked the big picture — he liked literal big pictures. He liked to see it. He liked ‘impact.’” —Variety"


 It is difficult to remember very many times when the national reporting lagged so far behind the awareness of the people as to the greater significance of events. Vietnam after My Lai and Tet, Civil Rights after the Edmund Pettus Bridge — the writing on the wall was being read by everyone in the country except the editors of newspapers and those who loaded teleprompters for talking heads.



Fire and Fury is a curious title for Michael Wolff’s inside look at the Trump politischemaschine. Of course, there is some of that fury going on, from the temper tantrums of The Donald and his übermensch, Steve Bannon, also no shortage of firings, but the real commotion is outside, where the country reels in shock after waking up to what it has just done.

Let’s be clear where our own sentiments lie. While no fan of the GOP’s clown show, we cover our nose at daughter Chelsea’s money laundering pyramid at the Clinton Foundation.

We were not keen to go to back to cold war with Russia, nor to continue the drone wars of terror from Palestine to the Northern Territories, nor for that matter, the seven-theater wars of aggression waged against peon states that were the meat and potatoes of Clinton/Obama imperial foreign policy.

Fire and Fury: Inside the Trump White House Paperback
With extraordinary access to the Trump White House, Michael Wolff tells the inside story of the most controversial…

We know DT was legitimately elected by people who, too easily deceived, believed he would stop those wars, pull us back from an insane foreign policy of strategic regional disruptions, expedite the path to citizenship for DACA children, restore fiscal sanity, provide a middle-class tax cut, repair the broken Veterans Administration, or any of the myriad other 7-day wonders he promised on the campaign. Even though glyphosate intoxicated masses are more easily fooled in the Age of Disintermediation, taking a chance on a beltway outsider made better sense than going with the known known of a sabre-rattling puppet of Wall Street elites and four more years of ruinous neoliberalism.

No, we are not being male chauvinist. We voted for Jill. Next time we hope to vote for Tulsi.
We knew instinctively that the Russiagate hoax was b.s. but it was good to see that reaffirmed by careful investigations of Cozy Bear hackers, the supposed smoking gun with Putin’s fingerprints on its ivory handle that, as Real News Max Blumenthal observed, is not a network of hackers but “a Russian-sounding name the for-profit firm Crowdstrike assigned to an APT to market its findings to gullible reporters desperate for Russiagate scoops.” [Thanks Caitlin Johnstone and Suzie Dawson for those trails!]

Johnstone writes:
Why does this keep happening? Why does the public keep getting sold a mountain of suspicion with zero substance? Over and over and over again these “bombshell” stories come out about Trump and Russia, Russia and Trump, only to be debunked, retracted, or erased from the spotlight after people start actually reading the allegations and thinking critically about them and see they’re not the shocking bombshells they purport to be? These allegations are all premised upon claims made by the US intelligence community, which has an extensive and well-documented history of lying to advance its agendas, as well as porous claims made by an extremely shady and insanely profitable private cyber security company, and yet all we’re ever shown is smoke and mirrors with no actual fire.
The entire NSA narrative of Russian hackers hangs on a thin thread of pre-election reports from Dutch Intelligence. Dutch Intelligence? Seriously? Let’s not forget this is a nation that after stealing Manhattan Island for the ridiculous price of 60 guilders (the Lenape must have walked away laughing, saying “This stupid colonist thinks you can own the earth, wait ’til he sees the bridge we can sell him) traded it away 21 years later for nutmeg. Nutmeg! What were the Dutch smoking? 

That’s the fire and fury part — more like smoke and mirrors. The DNC, Rachel Maddow, The New York Times, The Washington Post, and Wolf Blitzer are all consumed by this nutty, discredited narrative of “the Russians ate my election” to avoid having to grapple with the harder truth, laid out by Donna Brazile among others, that they lost the election because Debbie Wasserman Schultz sabotaged Bernie Sanders’ grassroots tsunami that could have easily swept the dems to victory.

That Put Donald Trump in the White House
NEW YORK TIMES BESTSELLER "Explosive... A blistering tell-all."---Washington Post "People should sit up, take notes and…

Wolff’s comedic high was election night, when no one in Trump Tower other than perhaps Bannon could believe what was happening. Suddenly Bannon was Merlin. The RNC, which had been angling to take back its party from the crazies after a Trump debacle, was thrown back on its heels, dizzy from the punch, grabbing the ring rope to steady itself.
What is already clear is that, as Mr. Trump’s aides and family members tried over 48 hours to manage one of the most consequential crises of the young administration, the situation quickly degenerated into something of a circular firing squad. They protected their own interests, shifted blame and potentially left themselves — and the president — legally vulnerable. — The New York Times, January 31, 2018
Flash forward to where we are more than a year later and we see the narrative in the mainstream media little changed from the day after the election. Whether ABC, Newsweek or Fox, the only way to explain where we are now is the Wizard of Oz theory, a.k.a. Vladimir Putin. Therefore the Special Counsel investigation into election hacking can only reaffirm what our intelligence agencies have already told us. Both Republicans and Democrats patiently await that judgment.
The memo is their latest salvo. Led by Mr. Nunes, the House Intelligence Committee is pivoting from examining Russia’s election meddling to instead investigating F.B.I. and Justice Department officials connected to the inquiry, putting them — with Mr. Ryan’s clear blessing — at the forefront of the broader pushback.— The New York Times, January 30, 2018
The people now know better.

Wolff subtly weaves a thread through his nefarious clown troupe that leads, nearly inexorably, to Trump’s indictment for money laundering and tax fraud. We say “nearly,” because who can say whether the fix is in? In a world in which Robert Mueller is Eliot Ness what happens next is just as Wolff has laid out for his readers: take 30 or 40 years of tax returns and the long reach of assistant special prosecutor Andrew Weissmann and you unravel the Trump-Manafort-Kushner web of off-shore banks and secret deals with foreign governments, organized crime, and Russian oligarchs.
“You’ve got the LeBron James of money laundering investigations on you, Jarvanka. My asshole just got so tight!
***
“‘You realize where this is going,’ Bannon continued, ‘This is all about money laundering. Mueller chose Weissmann first and he is a money laundering guy. Their path to fucking Trump goes right through Paul Manafort, Don Jr., and Jared Kushner … It’s as plain as a hair on your face … It goes through all the Kushner shit. They’re going to roll those two guys up and play me or trade me.
***
“‘It was clear where Mueller and his team were going,’ said Bannon: they would trace a money trail through Paul Manafort, Michael Flynn, Michael Cohen, and Jared Kushner and roll one or all of them on the president. ‘Its Shakespearean,’ he said…”
So now, while Rachel Maddow, The New York Times and The Washington Post rush to report the focus of Mueller’s investigation is narrowing laser-like to the Trump Tower meeting between Don Jr., Kushner and a Russian lawyer offering to broker dirt on Hillary Clinton in exchange for a softening of the US stance on adoption of Russian orphans (it turned out there was no dirt, they just used that as an excuse to get the meeting), the 10-to-the-nth million readers of Fire and Fury know better.

They are following the money.



Thanks for reading! Please consider sharing it around. My open banjo case catching for your spare change is at Patreon or Paypal. My next book is Carbon Cascades: Redesigning Human Ecologies, due out from Chelsea Green Publishers later this year.


Friends

Friends

Dis-complainer

The Great Change is published whenever the spirit moves me. Writings on this site are purely the opinion of Albert Bates and are subject to a Creative Commons Attribution Non-Commercial Share-Alike 3.0 "unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, n on-commercial use, and share alike: Attribution (BY): You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC): You may not use this work for commercial purposes. Share Alike (SA): If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. Therefore, the content of
this publication may be quoted or cited as per fair use rights. Any of the conditions of this license can be waived if you get permission from the copyright holder (i.e., the Author). Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. For the complete Creative Commons legal code affecting this publication, see here. Writings on this site do not constitute legal or financial advice, and do not reflect the views of any other firm, employer, or organization. Information on this site is not classified and is not otherwise subject to confidentiality or non-disclosure.