Saturday, August 29, 2015

Distributed Intelligence

"We may not understand it, but with quantum mechanics, we are beginning to be able to name what we can't comprehend."

Plants communicate — they are actually quite loquacious communicators. They are able to distinguish kin and non-kin. They communicate with plants of their own and other species and they communicate with animals and humans.

We are here in Iceland teaching a permaculture course with Robyn Francis and she likes to say plants are just upside-down humans. We have our senses up at the top — in our mouths, noses, ears and fingertips. Plants keep those mostly down in their roots but they also smell and taste and touch like we do. We keep our sex organs hidden down in our bottoms, but plants put them up on full display at the top.

But can a plant be intelligent? Some plant scientists, like Stefano Mancuso, think they are — since they can discover, learn, remember, and even react in ways we would call intelligent.



Michael Pollan, author of such books as Cooked, The Omnivore's Dilemma and The Botany of Desire, wrote a New Yorker piece a couple years ago revisiting The Secret Life of Plants by Peter Tompkins and Christopher Bird (1973) with a review of the latest developments in plant science. He said that for the longest time, even mentioning the idea that plants could be intelligent was a quick way to being labeled a whacko. But science has silenced the critics.

The new research causes a problem because it is often called plant neurobiology and plants do not use a central nervous system or have brains.

Nonetheless, it appears that plants can sense the presence of water or feel an obstruction in the path of its roots, before coming into contact with moisture or the obstruction. Plant roots shift direction to migrate towards the water source or to avoid the obstacle. If you've tried to cage bamboo perhaps you've encountered this.

Plants may be able to teach humans a thing or two, such as how to process information without a central processor like a brain.

Do plants use quantum mechanics, or can we speak of something called “quantum biology?” Jameel Sadik "Jim" Al-Khalili is an Iraqi-born British theoretical physicist, author and broadcaster. He is currently Professor of Theoretical Physics and Chair in the Public Engagement in Science at the University of Surrey. His recent TED talks provide an overview of some of the processes we are just learning about, including quantum tunneling in photosynthesis and DNA replication.



In a longer talk to the Royal Institution in 2013, Professor Khalili explored how quantum theory might explain some of the mysteries of plant senses.



In a forest system, Robyn tells our class, mother trees nurture young seedlings by sending them water and nutrients. They also starve out and steal nutrients from emerging plants they consider hostile to the ecology they are cultivating. In South Africa acacia trees increased the tannin in their leaves by 400% to poison the soil in order to halt an invasion by kudzu.

Plants may have as many as 15 senses, not just the six we take for granted. They can hear pollen. They can taste poisons at minute thresholds. They can feel the coming weather. They can smell danger. Photoreceptors in leaves sense and respond to changes in light, wind and humidity. Cryptochromes set circadian rhythms and control photomorphogenesis in response to blue or ultraviolet light. We know that salmon, sea turtles, spotted newts, lobsters, honeybees, and fruit flies can all perceive and utilize geomagnetic fields. Lately we’ve learned some plants (e.g.: Arabidopsis thaliana) also have magnetic compasses coming from a radical pair mechanism within the protein of their cryptochromes.

The entanglement of life is beyond an observable physical effect. We may not understand it yet, but with quantum mechanics, we are beginning to be able to name some of what we observe of the mystery.

 

No comments:

Friends

Friends

Dis-complainer

The Great Change is published whenever the spirit moves me. Writings on this site are purely the opinion of Albert Bates and are subject to a Creative Commons Attribution Non-Commercial Share-Alike 3.0 "unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, n on-commercial use, and share alike: Attribution (BY): You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC): You may not use this work for commercial purposes. Share Alike (SA): If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. Therefore, the content of
this publication may be quoted or cited as per fair use rights. Any of the conditions of this license can be waived if you get permission from the copyright holder (i.e., the Author). Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. For the complete Creative Commons legal code affecting this publication, see here. Writings on this site do not constitute legal or financial advice, and do not reflect the views of any other firm, employer, or organization. Information on this site is not classified and is not otherwise subject to confidentiality or non-disclosure.