You Can't Stop A Wave But You Can Surf-1

"Will common sense conservation be enough? Probably not."

 

Part One

Below is a kite sailboat outracing a 1000 HP speed-boat. Three years ago a lone kiteboarder out-sprinted a 50-meter racing yacht in San Francisco Bay. Team Oracle was in practice sessions for the America’s Cup when they got their clock cleaned.
Whether you come at this from peak oil, financial collapse or climate change, we are about to have a radical shift in global energy.

Peak Oil began its tour of the memesphere more than 70 years ago when Shell Oil geologist Marion King Hubbert started drawing waves on a chalkboard.
A chart of discoveries and production of crude oil published in Scientific American in 1998 lent renewed urgency to Hubbert’s forecast. Oil geologists were predicting global oil production would plateau soon and start a gradual decline.
The actual peak for conventional crude came in 2005, but by then the oil companies had a card up their sleeve — hydrofracturing — that opened up previously inaccessible reserves. Just look at what happened to fossil production in the United States, the first to frack.
Hall and Laherrere, 2018
There is just one hitch. Well, actually a couple. Fracking involves cracking rock as far as a mile deep in the Earth, and stimulating gases or fluids trapped there to rise through the fissures and be gathered in wells, then directed to the surface.

The first hitch is that it is expensive. Even the most profitable companies in the world have been feeling the pinch at present oil prices. The second hitch is that it is only ambulatory care, not a cure. You can see the problem in the upper right corner of the chart above. Fracked formations give up their gas in a burst and then production falls off rapidly. Because of this companies are forced to blast more fractures just to keep pace. The sweet spots are quickly exhausted and what are left are the more expensive, less productive dregs.
Hall and Laherrere, 2018
The third hitch is really the most serious, although its been economically externalized by the oil companies. Only some of the fracked gas makes its way to the wells. A lot of it finds fissures not connected to wells and goes straight to the atmosphere. Also, wells leak. All of them. Anywhere from 10 to 30 percent of the reserve goes to the atmosphere through casing cracks, brittle seals, and shifts in the earth, often caused by other nearby drilling.
Methane is 20 to 100 times more potent as a greenhouse gas than Carbon Dioxide
Strapped for cash to keep feeding insatiable consumer demand for petro-utopia, oil companies and governments do what they had always done. They print money. And print. And print. Oh, and sometimes they flip real estate.
That dark cloud you might have noticed on the horizon is the simply gargantuan sovereign debt of $217 trillion. The US leads the pack, with over $20 trillion in debt, but the EU is not far behind with $18 trillion. Japan has racked up $11.5 trillion and Britain has $7.5 trillion. Global debt is more than three times the size of the global economy, the highest it has ever been. The debt is made up of three groups: non-financial corporates, governments and households. The only ones who are doing well are those in the financial sector, and they are now buying private islands and stocking up on canned goods and ammunition.

Then we have Paris. We’ll always have Paris, won’t we? The Intergovernmental Panel on Climate Change told the 195 assembled heads of state, essentially, their goose is cooked. Smell that fine odor wafting from the kitchen? It is starting to smell a little burnt. It might be time to take it out of the oven.
VanVuuren 2018
In fact, it is already too late. We will pass the 1.5 degree “aspirational goal” for arresting climate change in a few years, and 2 degrees in another decade or two. We are on a path for nearly 4 degrees by the end of the century, and that assumes everyone meets their pledges to reduce, not a very safe assumption. One of the biggest emitters has already announced it is reneging and is pulling its rusting coal plants out of mothballs. 5 degrees by 2100 is more likely.
Delegates gathered in Marrakech and Bonn to try to find a way back from the cliff and made very slow progress. What is required, beginning about 2020, is a gradually steepening decline in fossil emissions, followed by a half century of negative emissions, or drawdown. There is nothing technologically or economically standing in the way of drawdown now, the impediments are all social and cultural.

Probably the largest impediment is an epidemic addiction to growth. It is still a political mantra most places. 

Consider what happens if you propose degrowth. In 1977, Jimmy Carter was briefed on Hubbert’s curve and rushed to tell the public that serious cutbacks would be required. Carter explained that exponential functions have doubling times, and in each successive doubling more is produced than in all the previous doublings combined. Unsustainable on a finite planet, he said.
"The world now uses about 60 million barrels of oil a day and demand increases each year about 5 percent. This means that just to stay even we need the production of a new Texas every year, an Alaskan North Slope every nine months, or a new Saudi Arabia every three years. Obviously, this cannot continue.
***
"The world has not prepared for the future. During the 1950s, people used twice as much oil as during the 1940s. During the 1960s, we used twice as much as during the 1950s. And in each of those decades, more oil was consumed than in all of mankind’s previous history.
Hansen 2018
"World consumption of oil is still going up. If it were possible to keep it rising during the 1970s and 1980s by 5 percent a year as it has in the past, we could use up all the proven reserves of oil in the entire world by the end of the next decade"
Carter then laid out ten principles, among them “we must start now to develop the new, unconventional sources of energy we will rely on in the next century,” the country had to reduce gasoline consumption by ten percent below its current level, and by the end of his first term there should be solar energy powering more than two and one-half million houses.

Carter urged that prices should generally reflect the true replacement costs of energy. “We are only cheating ourselves if we make energy artificially cheap and use more than we can really afford,” he said.
Peter Menzel, Material World, a Global Family Portrait
“We must ask equal sacrifices from every region, every class of people, every interest group. Industry will have to do its part to conserve, just as the consumers will. The energy producers deserve fair treatment, but we will not let the oil companies profiteer.”
Carter called the challenge the country faced “The Moral Equivalent of War.” We all know what happened next. A deep state cabal, working with the country’s enemies, engineered an October surprise that replaced Carter with a bumbling, affable, senile Hollywood actor who resolutely kept the nation out of that war. It was morning in America. Oil man Dick Cheney ran for Congress.

Bill Clinton opined: “You can’t get elected by promising people less.”

 
 
Emissions and energy use are usually framed in terms of national and international percentage reductions, but the energy use per head of the human population varies enormously between and within countries, no matter how it is calculated.
Peter Menzel, Material World, a Global Family Portrait
If we were to divide total primary energy use by regional population, we’d see that the average North American uses more than twice the energy of the average European (6,881 kgoe versus 3,207 kgoe, meaning kg of oil equivalent). Within Europe, the average Norwegian (5,818 kgoe) uses almost three times more energy than the average Greek (2,182 kgoe). The latter uses three to five times more energy than the average Angolan (545 kgoe), Cambodian (417 kgoe) or Nicaraguan (609 kgoe), who uses two to three times the energy of the average Bangladeshi (222 kgoe). 
Peter Menzel, Material World, a Global Family Portrait
According to Kris De Decker writing for The DEMAND Centre:
The highest energy users worldwide can contribute 1,000 times as much carbon emissions as the lowest energy users. Inequality not only concerns the quantity of energy, but also its quality. People in industrialized countries have access to a reliable, clean and (seemingly) endless supply of electricity and gas. On the other hand, two in every five people worldwide (3 billion people) rely on wood, charcoal or animal waste to cook their food, and 1.5 billion of them don’t have electric lighting. These fuels cause indoor air pollution [8 million child mortalities per year — more than malaria], and can be time- and labor-intensive to obtain. If modern fuels are available in these countries, they’re often expensive and/or less reliable. 
And if provided at that scale, they would wreck the climate even faster, which would seem to be the conflicting agenda of the UN Sustainable Development Goals.
Decker, Low Tech Magazine 2018.
Decker suggests that:
Focusing on energy services or basic needs can help to specify maximum levels of energy use. Instead of defining minimum energy service levels (such as 300 lumens of light per household), we could define maximum energy services levels (say 2,000 lumens of light per household). These energy service levels could then be combined to calculate maximum energy use levels per capita or household. However, these would be valid only in specific geographical and cultural contexts, such as countries, cities, or neighborhoods — and not universally applicable. Likewise, we could define basic needs and then calculate the energy that is required to meet them in a specific context. For example, central heating and daily hot showers are only a few decades old, but these technologies are now considered to be an essential need by a majority of people in industrialized countries.
Sadly, these days in the industrial world, even the energy poor are living above the carrying capacity of the planet. For example, if the entire UK population were to live according to the minimum energy budget that has been determined in workshops with members of the public, then (consumption-based) emissions per capita would only decrease from 11.8 to 7.3 tonnes per person. The UN Development Program’s Paris-based target is less than 2 long tons C per person per year. The ‘floor’ is 3–6 times higher than the ‘ceiling.’ We need to get to 2 metric tons per capita.

Will common sense conservation be enough? Probably not. And just how much is 2 tonnes per year?

164 to 227 hamburgers

one fifth of an automobile

1.9 m2 of concrete floor or swimming pool

or

one-eighth of a single BitCoin transaction

We’ll get to some more difficult choices in the next installment.


Thanks for reading! If you liked this story, please consider sharing it around. Our open banjo case for your spare change is at Patreon or Paypal.
 

Comments

Ian Graham said…
you are sounding beaten down methinks. Hitting 1.5dC in couple years? we're already there and that's without netting off global dimming cushion of .7dC. 2dC in couple decades? How about a critique next week of the Garrett Relation?
Tom Mazanec said…
First you say we are about to go down the Hubbert Curve of fossil fuel, then you say emissions will go up all across the century.
Can these go together?

Popular Posts